▲neo 10달전 | parent | favorite | on: GN⁺: 올림피아드 수준의 기하학 인공지능 시스템 AlphaGeometry(deepmind.google)Hacker News 의견 해커뉴스 댓글 요약: 이 연구는 DeepMind의 이전 AI 수학 논문보다 훨씬 실제적인 작업으로 보임. AI가 기하학 정리를 학습하여 증명을 찾는 데 사용되며, 기하학적 구조를 무작위로 추가하여 증명을 시도함. 이 모델은 일반화가 어려울 수 있지만, 신경 기호적 접근 방식이 매우 유망함. 시스템 1(ML 도구)과 시스템 2(논리적 증명 생성)를 연결하여 자체 감독 학습을 가능하게 함. 언어 모델이 얼마나 자주 유용한 구성을 생성하는지에 대한 궁금증. 논문에서는 여러 대안적 보조 구성을 제안하고 이를 병렬 처리하여 속도를 높임. 저자들이 코드와 가중치를 공개한 것에 대한 감사함. 이는 다른 연구자들이 연구를 이어갈 수 있는 기반이 됨. 사용된 트랜스포머 모델이 작다는 점이 흥미로움. 논문에서는 트랜스포머의 구체적인 사양을 설명함. Evan Chen의 인용문을 통해 AI가 생성한 증명이 인간이 읽을 수 있는 형태임을 확인함. Evan Chen은 유명한 올림피아드 수학 커뮤니티의 일원임. 이전 최고 기술이 이러한 문제 중 10개를 해결할 수 있었다는 사실에 놀람. 실용적인 평면 기하학 문제 해결 알고리즘이 존재함. ChatGPT가 IMO 스타일 문제를 해결하지 못했지만, 이 연구가 진짜라면 큰 발전임. 기하학적 증명을 찾는 것은 지능의 표현이며, AGI에 가까워진 것으로 보임. 증명을 검증하는 데 사용된 연역적 시스템에 대한 질문. 올림피아드 기하학의 관례가 수학의 다른 분야와 다르며, 이 논리를 모순 없이 형식화하는 것이 명확하지 않음. 해당 요약은 해커뉴스 댓글을 바탕으로 한 것으로, 각 댓글의 주요 내용을 간결하게 정리한 것입니다. AI와 기하학 증명에 대한 연구의 진전, 모델의 특성, 그리고 이러한 연구가 인공 일반 지능(AGI)에 얼마나 가까워졌는지에 대한 토론이 포함되어 있습니다.
Hacker News 의견
해당 요약은 해커뉴스 댓글을 바탕으로 한 것으로, 각 댓글의 주요 내용을 간결하게 정리한 것입니다. AI와 기하학 증명에 대한 연구의 진전, 모델의 특성, 그리고 이러한 연구가 인공 일반 지능(AGI)에 얼마나 가까워졌는지에 대한 토론이 포함되어 있습니다.