▲kuroneko 2023-06-09 | parent | favorite | on: Stable Diffusion으로 애니메 스타일 QR코드 만들기(arstechnica.com)원본 글을 요약기에 넣어보니까 이렇게 나오네요. 이 기사는 스캔 가능한 QR 코드 이미지를 생성할 수 있는 새로운 ControlNet 모델에 대해 논의합니다. ControlNet은 인간 눈에는 보통으로 보이는 이미지에 숨겨진 정보를 인코딩할 수 있습니다. 저자와 그의 동기들은 이전에 매개변수화된 QR 코드 생성기를 만들었지만 업데이트를 계속하지 않았습니다. 현재 아이디어는 Stable Diffusion이 출시된 후에 생각해냈습니다. 초기 ControlNet 시도는 중국 전통 패턴을 학습하는 것이었습니다. 저자는 AIGC All in One 문서와 HuggingFace JAX/Diffusers를 사용하여 학습했다고 언급합니다. ControlNet을 학습하기 위해서는 많은 양의 데이터와 컴퓨팅 파워가 필요합니다. 연구에서는 최대 300,000개의 이미지와 600 A100 GPU 시간이 사용되었습니다. 저자는 큰 학습률로 100,000개의 이미지 버전을 학습했습니다. 학습 후, 저자는 다양한 Checkpoint + LoRA + QR Code ControlNet 조합을 테스트하여 중국 전통 패턴, 우키요에, 2D, 잉크, 원근, 추상 및 PCB 스타일과 같은 다양한 스타일의 스캔 가능한 QR 코드를 생성했습니다. 생성된 QR 코드에는 중국 전통 패턴, 우키요에 스타일, 애니메이션, 일러스트, 잉크, 수채화, 3D 및 추상 스타일이 있습니다. 이 프로젝트는 몇 명의 동기들과 연구실의 GPU 자원과의 협력에 의존했습니다. Google TPU 서버도 학습 속도를 높이는 데 도움이 되었습니다. 저자는 앞으로 WeChat 공식 계정과 웹사이트에서 모델과 기술 문서를 공개할 계획입니다. 이 기사는 AI 생성 모델이 빠르게 발전하고 있음을 언급하며, 대학교를 다시 하고 싶다는 욕구를 표현합니다. 저자는 TPU 서버를 제공해준 Google과 HuggingFace에게 "즐거운 시간을 보낼 수 있었다"고 감사의 말을 전합니다. ▲lunamoth 2023-06-09 [-]혹시 요약기 어떤 서비스 쓰신건지 알려주실 수 있나요? 답변달기▲kuroneko 2023-06-11 [-]Kagi의 Universal Summarizer 사용하고 있습니다. 답변달기▲lunamoth 2023-06-11 [-]알려주셔서 감사합니다 답변달기
원본 글을 요약기에 넣어보니까 이렇게 나오네요.